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In this paper, we presentMuteIt, an ear-worn system for recognizing unvoiced human commands.MuteIt presents an intuitive
alternative to voice-based interactions that can be unreliable in noisy environments, disruptive to those around us, and
compromise our privacy. We propose a twin-IMU set up to track the user’s jaw motion and cancel motion artifacts caused by
head and body movements.MuteIt processes jawmotion during word articulation to break each word signal into its constituent
syllables, and further each syllable into phonemes (vowels, visemes, and plosives). Recognizing unvoiced commands by only
tracking jaw motion is challenging. As a secondary articulator, jaw motion is not distinctive enough for unvoiced speech
recognition. MuteIt combines IMU data with the anatomy of jaw movement as well as principles from linguistics, to model
the task of word recognition as an estimation problem. Rather than employing machine learning to train a word classifier, we
reconstruct each word as a sequence of phonemes using a bi-directional particle filter, enabling the system to be easily scaled
to a large set of words. We validate MuteIt for 20 subjects with diverse speech accents to recognize 100 common command
words. MuteIt achieves a mean word recognition accuracy of 94.8% in noise-free conditions. When compared with common
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voice assistants, MuteIt outperforms them in noisy acoustic environments, achieving higher than 90% recognition accuracy.
Even in the presence of motion artifacts, such as head movement, walking, and riding in a moving vehicle, MuteIt achieves
mean word recognition accuracy of 91% over all scenarios.

CCS Concepts: • Human-centered computing→ Ubiquitous and mobile computing systems and tools;
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1 INTRODUCTION

The market for Internet of Things (IoT) devices has grown exponentially over the past decade, accounting for
12.3 billion devices by 2021 [4]. These devices offer a variety of interaction modes, ranging from touch to speech
interactions [50]. However, with the emergence of speech recognition techniques, speech interactions have
surpassed touch interactions owing to their ease of use, hands-free accessibility, as well as faster input (voice
interaction is 3× faster than typing [74]). We use voice assistants on our phones and in our houses, querying for
information ranging from weather to game scores and recipes. In fact, the speech and voice recognition market
as a whole, which was valued at $6.9 billion in 2018, is projected to be worth $28.3 billion by the end of 2026 [24].
While intuitive and popular, voiced interactions can be inconvenient and unreliable in noisy environments,

such as in a crowded gathering or with the TV playing in the background. It can also be a cause of disturbance to
those around us, preventing us from using audible commands in the vicinity of someone studying or sleeping.
Furthermore, audible speech interactions compromise our privacy when used in public places. More importantly,
despite the ease of accessibility, voice-based systems do not serve people with speech disorders [38] or post-
laryngectomy patients [44] who are unable to produce sound, even if their articulation skills (jaw and lip
movements) are intact. Motivated by the limitations of voice-based interactions, we ask the following question:
łCan we develop a wearable system to recognize unvoiced (or inaudible) commands to enable voice-like intuitive
interactions?"

Unlike speech-based systems, using unvoiced speech is a novel hands-free interaction technique that is more
convenient than touch gestures, while also being less disruptive to those around us. In fact, a recent study [66]
shows that users prefer unvoiced speech over speech input, and are even willing to tolerate lower performance
for maintaining their privacy. Research efforts on unvoiced speech recognition have focused on tracking primary
articulators, such as lips or the vocal box, using vision [12, 30, 49, 65, 67, 82, 83], RFID [88], wireless [11, 47], or
ultrasound [14, 17, 50, 78] sensing techniques. However, these techniques either capture the user’s face [12, 67, 82],
disregarding their privacy, or mount sensors on the tongue [33, 53, 75] or the face [32, 42, 59], making them
obtrusive and socially awkward.
With the increasing social acceptance of headphones and earphones, ear-worn sensors (or earables) have

emerged as a favorable sensing modality. Assistive interaction technologies involving earables, like teeth typ-
ing [61, 70] have been proposed, but they are not as intuitive and simple as language-based commands [42].
Recent developments around earables have shown that they can be used to capture jaw motion [5, 46]. In fact,
JawSense [46] shows that skin deformities and muscle vibrations caused by unvoiced phoneme articulation can
be captured using an IMU placed on the Temporomandibular Joint (TMJ). However, JawSense can only recognize
individual sounds or phonemes, which is not sufficient for practical

MuteIt. In this paper, we present MuteIt, an earable system that recognizes unvoiced commands by tracking
jaw motion. MuteIt is capable of recognizing entire words and is robust to body/head movements. In contrast to
prior works [42, 73, 96] , MuteIt reconstructs a word from its components instead of training a word classifier,
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enabling the system to easily scale to any word. MuteIt includes a pair of inertial measurement units (IMU),
mounted on an off-the-shelf ear hook, to acquire the jaw motion effectively. One is placed behind the ear to be
used as a reference sensor to capture head motion. The other is placed on the TMJ to track the user’s jaw motion.
Figure 1 demonstrates our system’s concept and several use case scenarios for unvoiced command interactions.
The twin-IMU setup can be retrofitted to most behind-the-ear or bone conduction earphones or even commonly
used ear hooks used to hold ear-pods in place [20], enabling a socially acceptable form factor.

Challenges. We identify three research challenges for recognizing unvoiced command words using earables:
(1) Indirect speech sensing. Speech production typically involves multiple articulators working together to produce
sound. It is straightforward to interpret what a user is saying from primary articulators (such as lips and the
vocal box), and many prior works have done so [88, 94], albeit using obtrusive [33, 76] or privacy-compromising
techniques [67, 91]. The human jaw, on the other hand, is a secondary articulator with lower degrees of freedom
compared to the lips, for example. As a result, jaw motion does not exhibit sufficiently distinctive movements
for speech interpretation. As an exercise, imagine trying to interpret what a person is saying by looking at
their lips versus looking at their jaw; unvoiced speech can be easily inferred by looking at the lips only. To
the best of our knowledge, unvoiced command recognition by tracking a secondary articulator only is still an
unsolved problem. (2) Temporal phoneme overlap. As words are enunciated, phonemes tend to overlap to produce
compound sounds. For example, in the word mat, the phonemes /m/ and /ñ/ combine to produce the first part of
the word, and the combination does not resemble either phoneme. Accurate word recognition would require
precise phoneme isolation and identification. Therefore, prior work on phoneme recognition, such as JawSense,
cannot be effectively applied for unvoiced speech recognition; and (3) Body motion artifacts. Inertial sensors
are susceptible to signal corruption by motion artifacts caused by body movements, such as head movements,
walking, or even riding a bus. In our case, when tracking small jaw motions, large body movements lead to
a lower signal-to-noise ratio. To accurately capture jaw movements, we must decouple them from head/body
movements.

Our approach. To address these challenges, we synthesize principles from linguistics with signal processing
techniques to accurately detect unvoiced commandwords.We leverage fundamental concepts involved in teaching
the basics of the language to young children [92], i.e. each word is made up of several phonological components
such as syllables, which further consist of vowels and consonants. The signals captured using our setup are
dis-aggregated into these components. After segmenting each word into syllables, we localize and identify the
vowel within each syllable. Further, we also determine the starting and ending phonemes in each syllable. We
then model the task of word recognition as an estimation problem to continuously estimate state variables
(phonemes) from noisy measurements. We reconstruct the word as a sequence of phonemes by fusing a forward
and backward particle filter. MuteIt achieves command recognition without training on individual words, i.e.,
the system is scalable and not limited by the size of the vocabulary. The final output of the system is a list of
phoneme sequences along with the posterior probability of each sequence. Lastly, we validate the system for 100
words that are commonly used in voice commands with real-world experiments with over 20 users with different
speech accents.
To the best of our knowledge, MuteIt is the first system to recognize unvoiced words by tracking a single

secondary articulator, without requiring to be trained on a predefined set of words. In summary, we make the
following contributions in this paper:

• We design and develop MuteIt, a twin-IMU earable prototype that tracks a single secondary articulator, the
user’s jaw, for unvoiced command recognition.

• We devise algorithms for dis-aggregating a word signal into its phonological components, such as syllables,
vowels, onset viseme, and terminal phoneme.
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Table 1. Viseme Groups

• We develop a word recognition algorithm that uses a particle-filter-inspired estimation technique for recon-
structing a word from a partial phoneme sequence.

• Under an IRB-approved study, we validate the system for 20 users with diverse speech accents to recognize 100
words, commonly used in voice commands, with an average accuracy of 94.8%. MuteIt is also robust to user
movements when evaluated under noisy conditions such as with head movements, walking, and even riding a
bus. Further, we also compare the performance of MuteIt with state-of-the-art voice assistant systems. MuteIt
achieves an accuracy of 94.3% as compared to 42% achieved by Automatic Speech Recognition (ASR) systems.

2 PRIMER TO WORD ARTICULATION

MuteIt relies on unique signatures of jaw motion during word articulation to detect unvoiced commands. In this
section, we start by providing a primer on word articulation and the key components that makeup words.

2.1 Word Articulation

The human articulatory system shapes the airflow from the lungs to produce sound as we speak. The lips, teeth,
tongue, alveolar ridge, hard palate, and soft palate are termed primary articulators since they play an important
role in sound production and can be leveraged to interpret sounds. The jaw is often referred to as a secondary
articulator [63] due to its limited role in sound production. It is therefore challenging to interpret speech from
jaw motion only. The Temporomandibular Joint (TMJ) is a hinge-type joint that connects the jawbone to the
skull allowing it to rotate [68]. The lower jaw moves up and down, about the TMJ, to facilitate the movement of
lips and the tongue to articulate words [18].

2.2 Phonological Awareness

Phonological awareness refers to how young children learn the principles of speech articulation [10, 62, 81],
specifically the ability to identify (1) syllables in a word, and (2) phonemic components in a syllable. A word
can be broken into smaller chunks called syllables (𝜎), which are represented by the micro-pauses during word
articulation. 𝜎 has three components: onset, nucleus, and coda. The nucleus or the core of the syllable is often a
vowel sound, which is the most dominant sound in a syllable. The consonant(s) at the start of a syllable, before
the nucleus, is called the onset. The consonant(s) at the end of a syllable, after the nucleus, are called coda. For
example, łfantastic" is articulated with 3 micro pauses, fan·tas·tic; thus it is a tri-syllabic word. For the first
syllable fan, /f/ is the onset, /ñ/ is the nucleus, and /n/ is the coda. Consonant and vowel sounds are referred to
as phonemes, which are the smallest unit of spoken language.

2.3 Understanding Visemes.

Visemes refer to groups of phonemes that look the same visually due to the shape made by the jaw and lips [23].
For example, the phonemes /m/, /b/, /p/ have similar articulation (produced by pressing the lips together). Similarly,
the phonemes /f/ and /v/ (bringing the lips in contact with the teeth) belong to the same viseme group. Table 1
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Fig. 2. MuteIt Overview.

shows a list of visemes and the corresponding phonemes in each group. The phonemes in the same viseme group
have similar lip and jaw movements. Hence, it is not possible to distinguish the phonemes in the same viseme
group just by using information from the secondary articulator. Recognizing phonemes within a viseme groups
requires more information from the other articulators as well. In this project, we focus on detecting viseme
groups, vowels, and phonemes for unvoiced command recognition.

3 SYSTEM OVERVIEW

To efficiently recognize unvoiced commands, MuteIt relies on three major modules as shown in Figure 2. The first
module is designed to address the challenge of motion artifacts induced in movement data captured from the jaw.
These artifacts are typically caused by body movements during head movements or even walking. To facilitate
robust unvoiced command recognition while doing other daily activities, we leverage a twin-IMU sensing design
to successfully decouple the overlapping movements of the jaw and the head. MuteIt avails a pair of IMUs - one
placed on the temporal bone and the other on the TMJ. The IMU on the temporal bone can effectively capture
head movements, while the IMU on the TMJ captures the mixed signal of the jaw and the head. We use signals
from these two sensors to collaboratively remove the head movements induced noise via an anti-noise filtering
technique (ğ 4).
The second module undertakes the challenge resulting from the temporal overlap of phonemes by taking a

top-down approach. MuteIt dis-aggregates the filtered jaw motion signal into phonological components and
segments the IMU signal into its constituent syllables based on the characteristics of the jaw motions (ğ 5.1). Next,
we identify the phonemes in each syllable (ğ 5.2). To do so, we start with localizing the core of the syllable ś the
vowel, followed by identifying the viseme group of the onset of the syllable (first phoneme). Finally, we detect if
the last phoneme is a plosive. The output of this module is a partial phoneme sequence. Note that this phoneme
sequence is incomplete, i.e. it does not identify all the phonemes in the word because not all phonemes can be
identified by tracking jaw motion only.

In the third module, we build upon the previous modules to undertake the most significant challenge of com-
mand recognition by tracking a secondary articulator.MuteIt recognizes the unvoiced command by reconstructing
the word from the partial phoneme sequence obtained from the previous module. We design a bi-directional
particle filter that estimates the complete phoneme sequence using forward and backward estimation algorithms
(ğ 6). We leverage a dictionary, which contains the phonemic map of words, to ensure that only valid phoneme
sequences are generated1. Finally,MuteIt outputs a list of words (as phoneme sequence outputs shown in Figure 2)
along with the posterior probability of each sequence.

1Almost all standard dictionaries provide the phonemic map of each word [19].
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This top-down approach enables us to reconstruct any word from its phonemic components. In contrast to
machine learning-based word detection systems, MuteIt does not need to be retrained for recognizing new words.
As long as the word is present in the dictionary, MuteIt is capable of identifying it.

4 TWIN-IMU SENSING DESIGN AND ANTI-NOISE FILTERING

Movement signals captured from the jaw are buried under noises caused by motion artifacts. Common overall
body movements, such as walking, head movements, and riding in a vehicle can induce artifacts into the data
captured by the jaw motion sensor. These body movements are much larger in magnitude than jaw motion,
making it difficult to extract jaw motion from the corrupted data. To address this challenge, we propose a
twin-IMU setup, with two inertial sensors as shown in Figure 2. The jaw motion sensor is placed at the lower TMJ
to capture the jaw motion during word articulation. However, the signal from this sensor is easily corrupted
by overall body movements. To remove these artifacts, we place a second inertial sensor, the reference sensor,
behind the ear on the temporal bone. As shown in Figure 3, the reference sensor is able to capture the motion
noise caused by human motion artifacts, and since the sensor is isolated from the jaw area, jaw motion signals do
not appear in its readings. By applying differential measurements from the jaw motion sensor and reference sensor
readings,MuteIt can recover the jaw movement. We leverage this observation to model the head and overall body
movements (using data from the reference sensor), and then remove these artifacts from the jaw motion sensor.

Fig. 3. Jaw signals captured using twin-IMU setup: (a) For

jaw motion only, the jaw motion sensor captures the signal

while the reference sensor does not. (b) When the user is

walking, with no jaw motion, both jaw motion and reference

sensor capture the equal magnitude of the body movements.
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To synchronize data streams from the two sensors, the user lightly taps the reference sensor (once) at the
beginning of a session when they wear the device. We detect the tap on each sensor to align the time-series
signals.
We prefer this dynamic approach over a one-time offset measurement between the sensors because the

twin-IMU setup may have a clock drift over a long period of time.
Next, we transform the orientation of the reference and jaw motion sensor to the North East Down global

coordinate frame, so that both sensor signals are in the same coordinate space. This also makes our solution
agnostic to sensor orientation. Lastly, the reference sensor data is used as the anti-noise signal and subtracted
from the jaw motion signal to cancel the artifacts caused by body movements. Figure 4 shows that the SNR across
multiple frequencies is higher when using an anti-noise filter, compared to corrupted signal with walking.
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Figure 5 demonstrates the noise removal process by applying the anti-noise filter to the example word "map".
Figure 5(a) shows the head-nodding signal captured by the reference sensor. Figure 5(b) shows the jaw signal
while "map" was articulated, but corrupted by the head movement signal. The instances marked by red arrows
are corrupted due to motion and lead to incorrect word recognition. Figure 5(c) shows the jaw motion output
from the anti-noise filter; it is the unvoiced command "map" after the corrupted signal has been recovered. The
red arrows indicate the recovered portions of the signal. The recovered signal is similar to the unvoiced command
"map" when articulated without any head movement, as shown in Figure 5(d). We evaluate this anti-noise filtering
in ğ 8.

5 PHONEMIC COMPONENTS DETECTION

To recognize command words, we take a top-down approach wherein the filtered jaw motion signal is disaggre-
gated into its constituent phonemic components. To this end, we first segment the syllables from the filtered data
(Section 5.1). Then, we devise an algorithm to identify the phonemic components in each syllable, such as the
opening viseme (onset), the vowel (nucleus), and the terminal plosive. (Section 5.2). Breaking the signal down
allows us to reconstruct it (Section 6) without requiring to train a word classifier.

5.1 Syllable Segmentation

Syllables are the primary building blocks of a word and are denoted by the micro pauses that occur within a word.
To identify the syllables from the IMU data, we leverage insights from speech processing [9], where syllables
are identified using acoustic sonority [64]. Acoustic sonority refers to the rising and falling cycles of acoustic
energy. Figure 6(a) shows the audio signal for the voiced word "fantastic" and its acoustic sonority (dashed
vertical lines). On the other hand, earlier studies have shown a positive correlation between acoustic sonority
and jaw opening [21, 54]. In fact, a common technique for counting syllables is to place your hand under your
chin and say a word; the number of times your chin touches your hand, i.e., the number of times your jaw drops,
is the number of syllables in the word. Following this insight, we investigate the falling and rising energy of jaw
opening and closing captured by the z-axis of the gyroscope, the axis about which the jaw rotates. Figure 6(b)
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shows the measured rotation signal, where each cycle of falling and rising angular velocity corresponds to a
syllable. We can see that syllables in the audio data are represented by the sonority, and syllables in the IMU data
are represented by the falling and rising of the jaw.

Analogous to acoustic energy, we calculate the energy of jaw lowering motion from the z-axis of the gyroscope.
The energy signal is shown in Figure 6(c). There are several potential approaches for segmenting a word into its
constituent syllables based on the jaw motion energy. While we could employ a simple threshold-based algorithm
to detect change points in either the magnitude of angular velocity or the signal energy, this would require
choosing a threshold a priori. However, in practice, the threshold could be different for different users. Even the
threshold for a user may vary depending on talking speed and fatigue.

To address this, we employ a dynamic approach that does not require manually defining a threshold. We use
the Kullback Leibler (KL) distance for detecting syllable boundaries [39, 72, 80]. KL distance computes a measure
of how distinct two input data windows are, based on their relative entropy. The larger this value, the greater the
distance between the probability distribution functions (PDF) of the data segments. KL distance has been used for
segmenting audio data of different speakers [16]. We divide the signal into 11ms windows (typical human speech
rate is ≈ 9 phonemes/second) and compute the KL distance between consecutive windows. A distance higher
than a threshold (𝜃 ) indicates sharp changes in the jaw motion energy Ðcoinciding with syllable boundaries.
This threshold, 𝜃 , is the operating point obtained from the ROC curve in Figure 18a. The syllable segmentation
algorithm is evaluated in Section 8.2.3.

5.2 Identifying Phonemic Components

Within each syllable, we aim to identify as many phonemes as possible for efficient word reconstruction and
recognition. Figure 8 presents an overview of how MuteIt detects various phonemic components, using the
word fantastic as an example. For each syllable in the word, obtained from ğ5.1, first, the vowel is localized and
identified (ğ5.2.1). After that, the part of the syllable right before the vowel is used to identify the onset viseme
(ğ5.2.2), and the part right after the vowel is processed to determine whether or not a plosive is present (ğ5.2.3).
We present the details of each of these components in the following subsections.

5.2.1 Vowel Localization and Recognition. A syllable may not always have an onset or a coda, but a nucleus
is always present. For example, the word ago has two syllables a·go but the first syllable only has a vowel and
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Fig. 8. Phonemic component detection for the word "fantastic". The figure on the right shows the output generated at each

step.

Table 2. Vowels in the English language.

Vowel @ I i E ñ u: 2 A: aI 6 O: U

Word us quick speak left map move front start time what four good

no consonants. Importantly, vowels are the most sonorous sounds in spoken language, i.e. they are typically
enunciated with the mouth fairly open with lower jaw movement. Therefore, the jaw opening within a syllable
indicates the beginning of the vowel. We compute the KL distance (discussed in ğ5.1) within each detected syllable
to identify energy boundaries for rising and falling peaks - indicating jaw opening and closing. The segment
with the highest energy change is identified as the vowel within each syllable.

Once we localize the vowel in each syllable, the next task is to recognize it. We observe that every vowel has a
unique jaw opening signature and that a vowel retains its signature whether articulated as part of a word or
in isolation, i.e. an isolated enunciation of a vowel exhibits a similar movement pattern to a vowel in a syllable.
For example, Figure 7(a) shows the gyroscope data for the isolated vowel /6/. For the word "stop", the vowel /6/
shows similar jaw motion as depicted in Figure 7(b). Similarly, Figure 7(c) shows another isolated vowel /A/ and
the same vowel in the word "start" is shown in Figure 7(d). The jaw opening phase of the vowel can be seen
clearly in the word. We observe that when a vowel is present in a syllable, it always contains the jaw opening
phase of that vowel, but the jaw-closing phase can be overlapped with the succeeding phonemes. Therefore, we
use the jaw opening phase for recognizing the vowel.

To recognize vowels, we train a classifier for the 12 vowel sounds in English, as shown in Table 2. We extract
two types of features from the time-domain IMU data for the jaw opening phase of each vowel: linguistic-based
features and statistical features. Linguistic features capture vowel-specific information, whereas statistical features
can capture user-specific characteristics. The linguistic features are based on insights derived from how jaw
motion relates to the manner of articulation [79]. Since we do not have information about how other articulators
are engaged in speaking, we indirectly compute this information from jaw motion. Specifically, we compute the
jaw opening distance (correlated to tongue position), jaw motion smoothness (correlated with unstressed vowels
and jerky motion of vowels), and the spread of energy (a measure of impulse like jaw motion), and jaw rotation
speed along a different axis.
To calculate jaw opening distance, we first normalize the three-axis accelerometer signal and then double

integrate to estimate jaw opening. Even though the accelerometer data is noisy, we are only interested in the
relative jaw opening of different vowels and not the absolute values. Jaw motion smoothness captures if the jaw
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Fig. 9. Linguistic features for different vowels in the word capital. The jitters in the jaw motion are annotated in green circles

in (a). The frequency spectrum ((b), (c), (d)) represents the spread of energy for the vowels. A has no jitters and hence broader

and smooth energy peak in the spectrogram. While, I and @ have jitters and sharper energy peaks.

comes to the initial position in one smooth motion or is it irregular. For instance, as shown in Figure 9 (a) in vowel
/@ /, there are jitters in the jaw opening phase. This is because /@ / is an unstressed vowel and hence has a very
swift jaw motion which results in irregular spikes. We capture this by determining the location and magnitude of
jitters in the gyroscope signal. To quantify the spread of energy, we perform a Continuous Wavelet Transform
(CWT) [1] over the gyroscope data. We empirically choose the thresholds for calculating the duration of energy
that yield the best classification accuracy. We find the duration of time for which the energy was greater than 3
times the floor value. We also take the ratio of angular speeds of all axis; this represents the jaw rotation speed in
one axis relative to another and is different for different vowels.
We extract the following statistical features for the jaw opening phase of each vowel: mean, maximum,

minimum, standard deviation, integral, kurtosis, skewness, and cross-correlation between the accelerometer
and gyroscope axes. From the frequency domain, we add the first 8 DFT coefficients to our feature vector. We
train a 14-class classifier using 4 different classification models: RBF Support Vector Machine, Gaussian Process,
AdaBoost, and Random Forest. Of these, we use a Gaussian Process classifier (GPC) for classifying the vowels
since it achieves the highest accuracy. We train a personal model for each user, by using a small portion (1̃ minute)
of their data for training.

5.2.2 Onset Viseme Identification. After we localize the vowel within a syllable, we extract the signal from
the start of the syllable to the start of the vowel Ðthis is the onset for that syllable. Our goal is to identify the
phonemes that form the onset. A major challenge in identifying consonant phonemes is that several phonemes
lead to a similar movement of jaw and lips, and are therefore indistinguishable based on jaw or lip movement
only [8]. In linguistics literature, these phoneme groups are called visemes. Visemes are the "visual equivalent"
of a phoneme. Table 1 shows six viseme groups with their constituent phonemes. Visemes have been used in
previous works on speech recognition using lip reading [7, 88].
Figure 10 shows the jaw motion signal for several words and the onset for the first syllable in each word is

highlighted. In the word "move", to produce the /m/ sound, the lips are pressed against each other, which causes a
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change in the y-axis of the gyroscope data. The same jaw motion pattern is observed when another phoneme
from the same viseme group is articulated. For example, /b/ in "backward" has the same pattern as /m/ in "move".

As another example, notice that for the /n/ sound in the word "need", the bottom lip creates friction with the top
teeth, causing the lower jaw to slightly move upward. This causes a negative peak in the z-axis of the gyroscope
data, similar to /s/ in "student". We observe that the onset is not as prominent as the vowel, but different groups
of phonemes involve different jaw motions, which can be leveraged to identify the viseme group each syllable
onset belongs to. We train a Gaussian Process Classifier with the same features as that for vowel classification in
ğ 5.2.1 for a 6-class onset viseme classification. The classifier outputs the viseme class with a probability. We use
this probability estimate during word reconstruction in ğ6.

5.2.3 Terminal Plosive Detection. The last part of a syllable, from the end of the vowel to the end of the syllable,
is the coda. Typically the last phoneme in a syllable is the hardest to identify because it is manipulated by the
preceding phonemes. To our advantage, we observe that the most common terminal phonemes are plosives.
Plosives are phoneme sounds represented by the blocking of air by the mouth and then releasing a puff of air. To
aid in unvoiced command recognition, we are interested in the voiceless plosives /p/, /t/, and /k/ [56].
We observe that unvoiced plosives cause muscle deformation at the TMJ when the puff of air is released,

leading to a high-frequency component in the accelerometer signal. Figure 11 shows the accelerometer signal for
the word "flip". The sudden release of the puff of air while articulating the /p/ in "flip" at the end of the word
causes a high-frequency component, which can be observed as the spike in the spectrogram in Figure 11(b). We
detect this peak by using the change in energy for the frequency spectrum of the z-axis of the accelerometer data.
If the energy change is greater than an empirically determined threshold, it is identified as a plosive instance in a
syllable. This threshold is determined by analyzing the data and is evaluated in Section 8.2.4. When a plosive is
detected, we do not know the exact phoneme, so we assign equal probability to the three voiceless plosives.

6 WORD RECONSTRUCTION

The phonemic components obtained by MuteIt so far are not a complete sequence, i.e. we have identified some
phonemes (onset viseme, vowel, and terminal plosive) in the word, but not all. For example, when the terminal
phoneme is not a plosive, we are unable to identify the phoneme candidates. Similarly, when a word has two
consonants before a vowel,MuteIt is only able to identify the viseme group of the first phoneme. For example, for
the word "stop", MuteIt can identify the viseme group that /s/ belongs to and the vowel, but we cannot detect
the phoneme /t/. To bridge this knowledge gap we approach the phonemic map generation of the unvoiced
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command as a process of traversing in space of phonemes. The analogy can be drawn as phonemes in the word
are the checkpoints, we will use the phonemic components we can detect as guides and use the English language
dictionary as a map.

Problem Formulation. We propose to model our problem as an estimation problem and use a particle
filter-inspired technique to determine the complete phoneme sequence. Particle filters represent the belief state
with a set of possible states (or particles) and assign a probability of being in each of the possible states.
• State-space (𝑋 ): Each state in the state-space 𝑋 is defined as a phoneme. Since there are 44 phonemes in the
English language [57], the size of the state space is 44.

• Motion model: To model how phoneme states evolve over time, we use a subset of the English language
dictionary, which contains the phonemic maps for 1100 words. A phoneme 𝑝𝑘 at time 𝑘 can only be followed by
a subset of phonemes, depending on the words in the dictionary, i.e. some phonemes are more likely to appear
consecutively in a word than others. To simplify, assume that /m/ is the state at time 𝑘 , and the dictionary has
only 2 words that start with /m/ : mat and movie, then the motion model states that 𝑝𝑘+1 can be /ñ/ or /u:/. The
motion model is given by 𝑃 (𝑋𝑡 |𝑋𝑡−1).

• Measurement model: The measurement model provides the probability that we will see certain observations in a
particular state. In our formulation, we use the estimates 𝑍 for the phonemic components in a word, obtained
from the previous subsection. The vowel and viseme classifiers from ğ 5.2.1 and ğ 5.2.2 output the probability
for each class. We use these as measurements in our system. The measurement model is given by the likelihood
𝑃 (𝑍𝑡 |𝑋𝑡 ).

Sequential Estimation. Next, we discuss how we implement the estimation algorithm for identifying the
word by constructing the phoneme sequence. At any given time, the state 𝑋 of the system is represented by a
number of particles, where each particle has a weight. The total number of particles that can exist in the system
is the number of states, which is 44 in our case. Measurements from phonemic components are represented by 𝑍 .
The state of the system at time 𝑡 is given by:

𝑃 (𝑋𝑡 | 𝑍1, . . . , 𝑍𝑡 ) ∝ 𝑃 (𝑍𝑡 | 𝑋𝑡 ) 𝑃 (𝑋𝑡 | 𝑋𝑡−1) 𝑃 (𝑋𝑡−1 | 𝑍1, . . . , 𝑍𝑡−1)

At each iteration, there are 3 key steps:
+ Step 1: prediction with motion model, or the motion update;
+ Step 2: measurement update;
+ Step 3: resampling.
Initially, at time 𝑡1, during Step 1, one would expect the algorithm to initialize with a uniform distribution for

all particles. However, since we have access to a dictionary, we assign weights to particles at 𝑡1 based on the
probability that the particular particle (in this case phoneme) will appear in the first place. We use the frequency
of occurrence of a phoneme in the dictionary as the corresponding particle weight. This will automatically
eliminate the phonemes that do not start a word. During Step 2, we obtain the measurement from Section 5.2,
which is a list of phonemes (viseme, vowel, and whether or not there are plosives) with their probabilities. All
phonemes within a viseme group are assigned equal probability. In Step 3, during resampling, we assign particle
weights proportional to the observation likelihood from Step 2. We iterate over the entire word, and when we
arrive at the last phoneme, we reconstruct the word using the particle sequences. The probability of each word is
the joint probability of its candidates. The motion model ensures that all phoneme sequences are valid words.
However, this forward iteration has one drawback: If the first phoneme is incorrectly detected, the entire

sequence can be incorrect. For example, if for the word alarm the first vowel @ is misclassified as 2 , then the
forward iteration will misclassify the word alarm as uncharm. This is to note that both of these words differ by
only vowel sounds. To address this, we propose a particle filter with backward iterations. The backward estimation
particle filter is defined as P(𝑋𝑘 | 𝑋𝑘+1) = P(𝑋𝑘 | 𝑍𝑡 , 𝑍𝑡−1, . . . , 𝑍𝑘 ). The backward iteration runs independently in
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parallel with the forward iteration. The intuition is that forward and backward iterations are complementary in
nature. The two iterations are intentionally kept independent as we do not want one to affect another’s state
estimation. For the same example of the word alarm discussed above, using the backward iteration the probability
of alarm’s phonemic sequence is more than uncharm’s. This is because, when traversing from backward iteration
the probability of the phonemic sequence of alarm is higher than uncharm based on our dictionary. The same
is true when the vowel detected in the second and third syllable for di-, and tri-syllabic words is incorrect. In
that case, the forward iteration complements the backward. The advantage of using a probabilistic approach,
like particle filter, is that it can alleviate some errors that are likely to propagate in the top-down phonemic
component detection module. Another probabilistic approach, like HMM, would only consider the previous state
but not the entire sequence, and would therefore not be suitable. This is because the likelihood of a phoneme at
time 𝑡 is proportional to the joint distribution of all the phonemes till time 𝑡 − 1. Our approach is built on the
assumption that at least one of the vowels in di-, and tri-syllabic words are detected correctly.

Given that the two have complementary performance (evaluated in Section 8.2.5), we fuse them to develop a
bi-directional filter that combines probability estimates from forward and backward iterations of the particle
filter, given by:

𝑝𝑐 (𝑋𝑘 | 𝑍1:𝑇 ) = 𝑓comb
(

𝑝 𝑓 (𝑋𝑘 | 𝑍1:𝑘 ) , 𝑝𝑏 (𝑋𝑘 | 𝑍𝑇 :𝑘 )
)𝑇

𝑘=1
(1)

where 𝑝𝑐 is the combined probability distribution, 𝑝 𝑓 is forward probability, and 𝑝𝑏 is backward probability. We
use conflation, a conjunction scheme for independent probabilities [31], to consolidate the distributions 𝑝 𝑓 and
𝑝𝑏 into a single probability distribution. The combination function 𝑓𝑐𝑜𝑚𝑏 is therefore defined as the conflation of
𝑝 𝑓 and 𝑝𝑏 , given by:

𝑓𝑐𝑜𝑚𝑏 =

𝑝 𝑓 (𝑋𝑘 | 𝑌1:𝑘 ) .𝑝𝑏 (𝑋𝑘) | 𝑌𝑇 :𝑘 )

𝑝 𝑓 (𝑋𝑘 | 𝑌1:𝑘 ) + 𝑝𝑏 (𝑋𝑘) | 𝑌𝑇 :𝑘 )
(2)

The bi-directional particle filter outputs candidate phoneme sequences, each with a probability. For the example
discussed above, when we combine the forward and backward iteration using conflation probability for alarm
is higher than uncharm. This is because the vowel detected in the second syllable is correct which shifts the
estimate towards alarm.

7 MUTEIT IMPLEMENTATION

We prototype MuteIt and design experiments to validate unvoiced command recognition.

Prototype setup and data retrieval. To ensure a socially acceptable prototype, we design MuteIt with 1) a
small form factor, and 2) non-intrusive placement. Our earable prototype consists of an silicon ear hook [20] and
two IMUs [51]. Silicon ear hooks are commonly used to hold ear pods, specifically AirPods [20]. We attach two
IMUs to the ear hook. We envision that in the future prototype could be miniaturized and integrated in bone
conduction or around the ear earphones, or even hearing aids. The reference sensor is fixed behind the ear, so that
it sits on the temporal bone behind the ear to capture larger body movements. The jaw motion sensor is attached
to the ear hook using a flexible link. As opposed to a rigid system, the flexible link prevents vibrations captured
by one sensor from being carried to the other sensor. To maintain contact with the jaw, we use a medical-grade
gentle adhesive that allows the user to place the jaw motion sensor on the TMJ. Our experiment setup and the
prototype are shown in Figure 12. The IMUs transmit data wirelessly to a mobile phone over Bluetooth low
energy with a mobile application. We log timestamp, 3-axis accelerometer, and 3-axis gyroscope data at 100 Hz
for both sensors.

Data collection. We invite 20 volunteers (7 female and 13 male) to collect data in an IRB-approved study.
Our participants speak different native languages ÐEnglish (5), Hindi (5), Telugu (4), Chinese (2), Spanish (1),
Kannada (1), and Korean (1). Participants are undergraduate or graduate students aged 20-31 years. Before the
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Fig. 12. MuteIt’s prototype and experiment setup.

data collection process we ask users to fill out a consent form to record their data using our prototype and their
video. We hold an IRB protocol which allows us to attach the prototype on users’ TMJ and temporal bone.

We curate a set of 100 command words that are commonly used in voice assistants, smart home, and gaming
environments [55]. To obtain words from these commands, we select the words that occur commonly across
similar commands. For example, for the commands "How is the weather today?" and "What does the weather
today look like?", we select the words "weather" and "today". The words span across various combinations of all
the vowel sounds in the English language. Of the 100 words, 50 are mono-syllabic, 35 are di-syllabic, and 15 are
tri-syllabic.

We create a dictionary which contains the phonemic maps for 1100 words (100 test words and 1000 additional
words). The 1000 additional words are chosen so that some of them have only one phoneme different from the 100
words set. For instance, for the word freezer, we add breezer to the dictionary; for cancel, we add pencil. We also
include other common words used in the English language. While we only use a subset of the English language
dictionary, our system could potentially work with a much larger dictionary.
In addition to the twin-IMU data, we also collect the audio and video data of the experiments with Google

Pixel 3a and a laptop front camera, respectively. The audio and video data are used as ground truth to better
understand jaw movements and unvoiced enunciations for each user. Saying the words out loud also gives the
participants an opportunity to get familiar with the words before enunciating in an unvoiced manner. After the
experiment, all volunteers fill out an exit survey about their experience. We collect data in 3 scenarios:
• Noise-free environments: From a randomized list of the command words, each user articulates the 100 words in
an unvoiced manner 5 times and once inaudible manner, with as minimal body movements as possible.

• In presence of motion noise:We ask ten users to collect additional data where they articulate the word while
(1) moving their head, (2) walking, and (3) riding a bus. For head movements, participants move their heads
around freely. The experiment was designed to simulate the users’ natural body language in a real-world work
environment. For walking data, users walk in a large room at their normal walking speed. No instructions
were given regarding the pace or direction of walking. Along with this, we ask users to ride a bus. The users
are seated before the bus starts and are free to move around on the bus if they wanted to. This environment is
most challenging as it involves multiple sources (user and bus) of overlapping motion noise.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 140. Publication date: September 2022.



MuteIt: Jaw Motion Based Unvoiced Command Recognition Using Earable • 140:15

• In presence of external acoustic noise: We ask users to articulate words when music was played on speakers and
also over the Airpods worn by the user. This experiment was designed to evaluate if MuteIt an be integrated
with off-the-shelf earphones without any interference from the music being played. We also play sounds in the
background to simulate different noisy acoustic environments. We simulate five environments: quiet library,
rock music playing in background, noisy restaurant, traffic noise, and machine noise. We play all these sounds
via laptop at 60 dB. We specifically select these environments as they encompass a wide range of scenarios.
For instance, a noisy restaurant has people chatting which is similar to attending a gathering or a conference
while machine noise simulates environment of construction sites and factories. We ask 5 users to articulate 20
commands, 5 repetitions of each in voiced manner while the sound is played in the background. We then ask
the volunteers to repeat same set of commands 5 times each in an unvoiced manner, with the same sounds
playing.

8 EVALUATION

In this section, we first describe the evaluation metrics and baselines for MuteIt and its components (ğ 8.1). Then,
we evaluate the overall command recognition and various components of MuteIt (ğ 8.2.1 - ğ 8.2.5). Next, we
investigate the robustness of MuteIt in different environments (ğ 8.2.6). Finally, we present results from our user
study (ğ 8.3).

8.1 Metrics and Baselines

8.1.1 Evaluation Metrics. We use Top-1 and Top-2 accuracy for word recognition. These metrics are commonly
used in the Natural Language Processing (NLP) as well as the vision community [13, 15, 34, 45, 85, 86, 89] for
models that output probabilities. Top-1 accuracy measures the proportion of instances for which the predicted
word matches the target word. Top-2 accuracy measures the proportion of instances for which the target word is
in the top two predicted words (with highest probabilities). Along the same lines, Top-1 error is the number of
times the most probable outcome is not the same as the ground truth, and Top-2 error is the measure of number
of times neither of the two most probable outcomes is the same as the ground truth. We report Top-1 and Top-2
accuracy as we envision that MuteIt can be integrated with a language model for continuous unvoiced speech
recognition, which can select the most appropriate candidate from a list of words by taking the sentence context
into account.

8.1.2 Baselines. We use the following four baselines for evaluating MuteIt.

• Greedy matching. In this baseline, we use a greedy matching approach for word recognition, instead of the
proposed bi-directional particle filter. We match the phonemic components (from ğ5.2) with the words in
our dictionary to find the closest match. If all the phonemic components are detected correctly, we are
able to find the accurate target word from the dictionary. If no word is present with the detected phonemic
sequence, the Top-1 accuracy is zero. However, when multiple words may be a match, for example a viseme
group with multiple phonemes is detected, the greedy algorithm is not able to distinguish between words
where only a single phoneme is different. For example, map and back are difficult to distinguish since the
starting phonemes /m/ and /b/ belong to the same viseme group, and both words end with a plosive.

• JawSense-based. JawSense [46] senses the muscle deformation caused by unvoiced isolated phonemes
spoken by the user. It is capable of recognizing six phonemes with 92% classification accuracy. In this
baseline, we use the JawSense phoneme recognition model instead of the proposed phonemic component
detection model to recognize command words. Since JawSense only accepts phoneme signals as input, we
first split the jaw motion signal of a word into phonemes using heuristics from human speech rate (each
phoneme lasts approximately one-ninth of a second), and extract statistical features proposed by JawSense.
The features used by the classifier in JawSense are only statistical as compared toMuteIt’s pool of linguistic
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and statistical features. The output phonemes from JawSense are put together to form the word. If the
phonemic map generated for the word is incorrect (i.e. not a valid sequence), the Top-1 accuracy is zero.
We also use JawSense as a baseline for vowel and viseme classification as well, as discussed in ğ 8.2.4.

• Conventional particle filter approaches. We use the conventional particle filter technique (without the
bi-directional approach) as a baseline. The forward and backward PF are described in ğ6.

• Voice assistant systems. To compare MuteIt s performance in noisy acoustic conditions, we use two most
popular voice assistants [2] Siri [6] and Alexa [3].

8.2 Results

(a) Command recognition accuracy across mono,

di, and tri syllabic words.

JawSense Based

Greedy Matching

Forward PF

Backward PF

MuteIt

(b) CDF for error. Solid lines depict Top-1 Error; dotted

lines depict Top-2 Error.

Fig. 13. Command recognition accuracy and comparison with baselines .

8.2.1 Overall Command Recognition. We evaluate MuteIt’s overall command recognition performance under
different conditions. Figure 13a shows the recognition accuracy for mono-, di- and tri-syllabic commands. We
observe that MuteIt achieves a higher than 90% accuracy across all command words. Moreover, MuteIt achieves
up to 96.7% and 97.5% on average for top-2 and top-3 accuracy for all words. Note that the top-3 accuracy is close
to top-2 accuracy, implying that most of the time the target word is in the top 2 predicted words.
Figure 13b shows the cumulative distribution function (CDF) plot of top-1 and top-2 error for the baselines

and MuteIt. We can see that MuteIt outperforms all the baseline approaches. JawSense based word recognition
has an error of 68% for more than 75% of the command words, showing the importance of correctly localizing
the phonemic components as well as our word reconstruction technique. Further, the 90-percentile error for
greedy matching is as high as 47%, indicating that even for a moderately sized set of 100 command words, greedy
matching is not able to accurately detect the unvoiced words from partial phoneme maps. Even by using the
forward or backward particle filter approach, we significantly improve over the greedy matching based word
recognition. Finally, the bi-directional particle filter inMuteIt overcomes the limitations presented by the baseline
approaches, with top-1 error less than 7% for all data.
The top-1 accuracy for all users is shown in Figure 14. All the users have top-1 accuracy greater than 93%

showing that our system is robust across users with different accents. Of the top ten users with the highest
accuracy five were native speakers. This can be explained by the correctness of their enunciation (as compared to
standard phonemic maps found in the dictionary), while Kannada and Chinese users had slightly lower accuracy
as compared to other users.

8.2.2 Comparison with Voice Assistants. We evaluate how well MuteIt performs as compared to state-of-the-art
voice assistants. The top-1 word recognition accuracy of Siri, Alexa, andMuteIt is shown in Figure 15. We compare
MuteIt with voice assistants and not an acoustic speech recognizer as we want to emphasize the performance of
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Fig. 14. Median top-1 accuracy for all the users is greater 0.93.
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Fig. 15. MuteIt performs better when compared with Siri and Alexa under external acoustic noise.

commercially available voice assistants in noisy acoustic conditions. To get the ground truth for voice assistants,
users articulated command words like "weather". If the voice assistants recognize the command word correctly,
they would respond accordingly and the accuracy would be 1. Some other example command words are timer,
music, calendar, and map.

Though in a quiet environment (dB< 15) Alexa and Siri outperform MuteIt by a small margin (4%), our system
is robust to external acoustic noise. We notice that the performance for Alexa and Siri drop sharply in a noisy
restaurant and when rock music is playing in the background, with less than 40% top-1 accuracy. In contrast,
MuteIt has accuracy higher than 90% for all the noisy acoustic environments. This demonstrates that the unvoiced
nature of MuteIt makes it extremely robust to scenarios with acoustic noise (where popular voice assistants
perform poorly), and therefore it can potentially be used as an alternate mode of interaction in noisy real-world
scenarios.

8.2.3 Syllable Segmentation. In this section we evaluate the syllable segmentation module for both, the number
of syllables detected as well as the segmentation accuracy. Figure 16 shows the confusion matrix for syllable
counting. MuteIt can identify the number of syllables with a 97% weighted accuracy.

We notice that words with vowel /ñ/ are among the most misclassified words. This is because /ñ/ is a diphthong.
In diphthongs, two vowel sounds are combined. This causes the jaw to move downwards twice in a syllable
(instead of just once), leading to overcounting the syllables. Beyond syllable counting, we also evaluate for the
accuracy of syllable segmentation. We consider a segmentation accurate (true positive) if the detected segment
boundary lies within 10 ms of the manually labeled segment boundaries. This value is based on human word
articulation speed. Syllable boundaries detected outside this limit are labeled as false positives. Figure 18a shows
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the ROC for the syllable segmentation module. We achieve a 96.3% true positive rate and 3.1% false-positive rate
at our chosen operating point. The value of this operating point is 1200 and does not need to be adjusted for
every user.
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Fig. 18. Syllable segmentation and phonemic components detection.

8.2.4 Syllable-level Phoneme Identification. Here we evaluate the performance of vowel and viseme classification,
and terminal plosive detection by MuteIt.

Vowel and onset viseme classification. To train the GPC classifier for onset vowel and viseme we first
randomly shuffle the data and then perform a 70-30 split for training and testing respectively. Also, we perform a
stratified split such that we have the same proportion of the samples from each mono, bi, and trisyllabic words. We
leave out the training data in the evaluation. We test the vowel and onset viseme classification against JawSense
based phoneme detection as the baseline. In the baseline approach, we divide a syllable in three equal parts and
denote the first part to be the onset and the middle part to be the vowel. We extract the same statistical features
as proposed in JawSense and use their model to classify vowels and visemes. Figure 18b shows the accuracy for
the baseline approach vs MuteIt. We can see that in contrast to the baseline approach, MuteIt accurately localizes
the vowel which significantly improves the vowel and viseme identification. The increase in accuracy is due to
(1) correctly localizing the phonemic components, and (2) better representative features.

Terminal plosive detection. Figure 18c shows the precision-recall curve for terminal plosive detection. We
achieve 96.5% recall and 95.7% precision at the threshold we choose for classifying the terminal phoneme as
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plosive or not. This threshold is 0.6 after signal normalization and does not need to be adjusted for every user.
The highest false negative rate (4.7%) is for phoneme /p/. This is because the /p/ sound is produced by a puff of air
which can be restricted due to phonemes surrounding them, which is not true for /t/ and /k/ which are produced
by tongue rubbing on upper part of mouth. Detecting unvoiced plosives accurately also provides an anchor to
the backward iteration of the particle filter, leading to higher overall word accuracy.

8.2.5 Comparing Particle Filter Variations. Figure 17 shows the top-1 accuracy for forward PF, backward PF, and
MuteIt (bi-directional filter) for several words from our 100-word test set. For short words like uber and alarm,
where the first syllable consists of a single phoneme, the forward PF has lower top-1 accuracy as compared to
backward PF. This is because during the forward iteration of the PF, if the starting phoneme is detected incorrectly,
the PF is unable to recover. Similarly, for words that end in a vowel, like camera or policy, the backward PF yields
lower accuracy compared to the forward PF. We observe that the bi-directional PF implemented in MuteIt leads
to higher accuracy for these words, even when the forward and backward PF do not provide accurate estimates
separately.

8.2.6 Sensitivity Analysis. This section shows thatMuteIt can be used successfully in various real-world scenarios.
We evaluate MuteIt under the impact of body movements during daily activities. We also evaluate the system on
different days to investigate for any mounting bias.

Impact of body motion. We evaluate MuteIt in scenarios where the person is performing larger body
movements, such as head movements, walking, and riding a bus. Our twin-IMU setup plays an essential role in
filtering these noisy movements.

First, we compare how MuteIt’s anti-noise filtering technique performs in scenarios with body movements. We
compare the performance of MuteIt’s anti-noise filtering with three single sensor approaches as baselines (1) S:
Baseline. we use the corrupted signal from jaw motion sensor and do not perform any noise reduction; (2) S: High
Pass. we apply a 5 Hz filter to remove the body movements; and (3) S: Deconvolution. we perform deconvolution
of the corrupted jaw motion signal and the body movement signal (with no jaw movement). Figure 19 shows the
performance of MuteIt’s anti-noise filtering, compared with these three single-sensor approaches. We report
significant improvement in word detection accuracy using the twin-IMU setup.
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motion noise.

Next, we assess the performance of MuteIt in the presence of motion noise for the three scenarios presented in
ğ 7. Figure 20 shows the top-1 word recognition accuracy in presence of different motion noises. Top-1 accuracy
for word detection is 93.8% with head movements, 91.9% while the user is walking, and 87% when the user is
riding a bus. The accuracy is lower when the user is riding a bus because the accelerometer signal’s magnitude
captured by reference sensor is significantly greater as compared to jaw motion sensor.
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Impact of music playing on earables.We testMuteIt under the influence of music playing in the background
and playing on earpods when a user wears them. We experiment with different dB levels: 45 dB and 75 dB for
external music, and 20 dB and 60 dB for music playing on earpods. We measure the dB using Google Pixel 3a via
Sound Meter app [69]. We observe that music does not impact the jaw movement signal and the accuracy of
unvoiced command word recognition. This confirms that in the future, MuteIt can be integrated into commodity
headphones without suffering interference from the music being played on the headphones.

Table 3. Performance of MuteIt across different sessions.

Performance across different sessions. In this section, we evaluate how well MuteIt performs when data
collected in one session is used to train vowel and viseme classifier and the data collected in a different session
is used as a testing set. The sessions were at different times to ensure data diversity. We ask 10 volunteers to
articulate 55 words, 5 repetitions of each word, in both sessions. Table 3 shows the Top-1 accuracy of the 10 users.
As seen, the accuracy for different sessions is more than 90% with less than 0.1% variance across sessions for
all the 55 commands. This demonstrates that the performance of MuteIt is repeatable across sessions without
requiring any calibration.

8.3 Usability Analysis

We conduct a user study to validate the usability of MuteIt. Besides this, we also benchmark the latency and
power consumption on Raspberry Pi 3 Model B+.

8.3.1 User Study. We conduct a user study to validate the usability of MuteIt. All participants are provided with
the link to a Google Form that they filled anonymously. The form contains several questions on a Likert scale [41],
designed after the SUS survey [52]. The feedback from the users is presented in Figure 21. When asked if the
system "was comfortable to use", all users either Agree or Strongly Agree. In response to "would like to use this
system frequently", 91% agreed. 80% of the users find MuteIt "intuitive to use". All participants state that MuteIt is
not complex. When asked how long they " will be comfortable using the system for", 80% of users selected 2 hours
or less. They further explain that this duration is determined generally by how long they’re willing to wear their
earpods, and does not bear on the comfort of MuteIt.

Complex to use

Intuitive

Convenient

Frequent Use

Comfortable 30%70%

10%41%50%

22%56%32%

35%15%65%

25%75%

Strongly Agree  
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Neutral 

Dsiagree

Strongly 

Disagree

Fig. 21. User study responses for usability of MuteIt .

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 140. Publication date: September 2022.



MuteIt: Jaw Motion Based Unvoiced Command Recognition Using Earable • 140:21

8.3.2 Latency and Power Consumption. We run MuteIt on Raspberry Pi 3 Model B+ and measure the latency
using Python3, and power consumption using Monsoon Power monitor [37]. We run MuteIt for 1, 000 unvoiced
command words and report average results. MuteIt takes 2.72 seconds and consumes 1640 mW of power on
an average to detect an unvoiced command. This includes streaming data over Bluetooth, anti-noise filtering,
detecting the phonemic components, and a bi-directional particle filter for word reconstruction for each unvoiced
command. The word reconstruction using a bi-directional particle filter takes the longest (0.8s) among all the
steps. This is because it has to perform the mapping from an 1100 words dictionary, which can be reduced by
using appropriate data structures. We aim to improve MuteIt’s response time in the future.

9 LIMITATIONS AND DISCUSSION

Continuous silent speech recognition: Currently, MuteIt can recognize isolated command words. We ask
the users to speak slowly to obtain jaw movements during unvoiced speech articulation. In the future, we will
explore continuous unvoiced speech recognition at a regular speaking pace. This can be performed by identifying
word boundaries within a sentence and then performing recognition of individual words using MuteIt’s pipeline.
Impact of dictionary size: Currently we have a dictionary of 1100 words from which we estimate prior and
transition probability for the bi-directional particle filter. However, if we increase the size of the dictionary to a
larger number (>10M) there might be words with non-unique phonemic maps. This is due to ambiguity between
phonemes within the same viseme group. For example, after identifying every phonemic component of the words
"map" (/mñp/) and "back" (/bñk/), we do not have information about the onset phonemes as /m/ and /b/ belong
to the same viseme group. These cases can be mitigated during continuous unvoiced speech recognition as we
can select the appropriate word based on the context.
Integration with commodity earables: Currently, we have a prototype with a twin-IMU setup. While there
are commercially available earables like eSense [43] and AirPods which are equipped with IMUs, the placement
of our IMUs is different than the ones present in these devices. In the future, we envision that the prototype can
be miniaturized and commercial headphones can be instrumented with it.
Scalability to larger user cohort: We evaluated MuteIt with 20 users. Currently, we have a personalized model
for each user. Though the data collection time is less than 3 minutes for achieving >95% word recognition accuracy,
in the future, we believe as we collect more data we can train a generalized model.

10 RELATED WORK

Unvoiced speech recognition (USR) has been explored as an efficient alternative mode of interaction, especially
with the growth of wearable devices. In fact, users are more readily accepting silent speech interaction technologies
[66]. Efforts in unvoiced speech recognition broadly fall into two categories: contact-based methods (e.g., wearable
devices) and contactless methods.

10.1 Contact-based Methods

Contact-based methods often require that sensors have direct contact with users’ head and neck area for signal
acquisition. Sensors mounted in contact with the face are used to measure muscle activities for unvoiced speech
recognition [58, 60, 71]. AlterEgo [42] uses EMG electrodes placed around cheeks, lips, and jaw to capture neuro-
muscular signals in internal speech articulators. Approaches relying on muscle vibration sensing are obtrusive
and often not socially acceptable as skin electrodes are attached to the user’s face around the cheek and lips [59].
Sensors placed on the articulators [27, 33, 53, 73, 75, 88], or even sensors retrofitted to masks [32] can capture
the articulators’ motion and hence infer unvoiced speech. SilentSpeller [48] tracks tongue movements using a
dental retainer equipped with a capacitive touch sensor, enabling the user to type by spelling unvoiced words.
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However, some of these techniques are intrusive, wherein magnetic sensors are mounted on the tongue or inside
the mouth [33, 53, 75]. Sahni et al. [76] captured tongue and jaw movements related to unvoiced speech using a
magnet glued to users’ tongues. Head-mounted sensors are also used to detect hotwords via head motions [29],
but are limited in the number of words they can detect. RFID Tattoo [88] utilizes battery-less and flexible RFID
tattoos placed around the lips. However, it requires an RFID reader in the vicinity and has poor performance on
words out of their vocabulary dataset. JawSense [46] uses an accelerometer placed on TMJ to identify isolated
phonemic sounds but does not recognize words. Cameras and microphones placed close to the mouth [25, 49] can
be affected by external visual and acoustic noise. In contrast to existing wearable systems,MuteIt is non-intrusive,
can be integrated into commodity headphones making them socially acceptable, and can recognize unseen words.

10.2 Contactless USR

: Efforts in developing contactless systems for USR typically employ technologies such as vision, wireless [87],
microphone [26, 35, 36, 84, 94], or ultrasound [14, 17, 50, 78]. Vision-based systems [12, 22, 30, 49, 65, 67, 82, 83, 91]
utilize a camera for tracking facial features from a primary articulator, such as lips. Lip-Interact [83] can detect
44 commands using the front-facing camera on a smartphone with a 95% accuracy. However, these systems
have some limitations: their performance is impacted by lighting conditions, camera angle, and line of sight,
and they are computationally expensive. Moreover, most camera-based systems approach word recognition as a
classification task, and to support more commands over time, the system will need to be retrained with a large
number of samples for the new words. Lastly, inaudible acoustic signals generated by lip movements are captured
using microphones [26, 35, 36, 84, 95, 96], and the Doppler shift is leveraged for word identification. SoundLip [95]
takes inspiration from sequential models like Connectionist Temporal Classification (CTC) [28] and successfully
uses them for silent speech interfaces using inaudible acoustic signals. Like MuteIt, SoundLip can be generalized
to unseen words. However, the CTC model is hard to train [93] because of the network initialization process. One
way to circumvent this issue is to use a very large amount of training data [77], although it requires significant
time and effort from the users and is not always feasible. SoundLip requires users to articulate 40 samples of each
word, while we have five samples of each word and still achieve comparable accuracy. Another reason for not
using CTC models is the requirement of a strong language model [90] for high accuracy. Since MuteIt focuses
on isolated words, we cannot use a language model and context. EarCommand [40] recognizes silent speech
commands from ear canal deformation using in-ear earphones for a limited dictionary of commands, but the
performance drops for 3 syllable words as longer words introduce motion and unexpected noise in the system.
In contrast, MuteIt achieves similar accuracy and can be easily scaled to new words because it reconstructs a
word from its constituent components.

11 CONCLUSION AND FUTURE WORK

In this paper, we present MuteIt, an unvoiced command recognition technique that leverages jaw motion. To the
best of our knowledge, MuteIt is the only system that achieves command recognition with an accuracy of 94.8%
by tracking only a secondary articulator. MuteIt uses a twin-IMU earable setup that can cancel motion artifacts
caused by walking and head movements. In contrast to prior approaches, MuteIt does not train a word classifier.
Instead, we identify the components of a word and reconstruct the word by modeling it as an estimation problem.
This enables our system to be scaled to a large number of words without the need for retraining.

In the future, we plan to explore miniaturization of the prototype and use MuteIt for continuous unvoiced
speech recognition. We also plan to evaluate the system for day-to-day activities that involve non-speech-related
jaw motions like chewing and yawning. These activities also induce jaw movement and cannot be removed via
the twin-IMU design. Therefore, context-based approaches will be explored to further enhance the system’s
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robustness for day-to-day use. We believe that this work sets a new paradigm in non-intrusive unvoiced speech
recognition.
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